Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
Front Immunol ; 13: 1056272, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2198899

RESUMEN

Introduction: The Middle East respiratory syndrome coronavirus (MERS-CoV) and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are two highly contagious coronaviruses causing MERS and COVID-19, respectively, without an effective antiviral drug and a long-lasting vaccine. Approaches for diagnosis, therapeutics, prevention, etc., particularly for SARS-CoV-2 that is continually spreading and evolving, are urgently needed. Our previous study discovered that >60% of sera from convalescent COVID-19 individuals, but <8% from general population, showed binding activity against the MERS-CoV spike protein, indicating that SARS-CoV-2 infection boosted antibodies cross-reactive with MERS-CoV. Methods: To generate antibodies specific to both SARS-CoV-2 and MERS-CoV, here we screened 60 COVID-19 convalescent sera against MERS-CoV spike extracellular domain and S1 and S2 subunits. We constructed and characterized monoclonal antibodies (mAbs) from COVID-19 convalescent memory B cells and examined their binding and neutralizing activities against human coronaviruses. Results and Discussion: Of 60 convalescent serum samples, 34 showed binding activity against MERS-CoV S2, with endpoint titers positively correlated with the titers to SARS-CoV-2 S2. By sorting single memory B cells from COVID-19 convalescents, we constructed 38 mAbs and found that 11 mAbs showed binding activity with MERS-CoV S2, of which 9 mAbs showed potent cross-reactivity with all or a proportion of spike proteins of alphacoronaviruses (229E and NL63) and betacoronaviruses (SARS-CoV-1, SARS-CoV-2, OC43, and HKU1). Moreover, 5 mAbs also showed weak neutralization efficiency against MERS-CoV spike pseudovirus. Epitope analysis revealed that 3 and 8 mAbs bound to linear and conformational epitopes in MERS-CoV S2, respectively. In summary, we have constructed a panel of antibodies with broad-spectrum reactivity against all seven human coronaviruses, thus facilitating the development of diagnosis methods and vaccine design for multiple coronaviruses.


Asunto(s)
COVID-19 , Coronaviridae , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , SARS-CoV-2 , Anticuerpos Monoclonales , Células B de Memoria , Anticuerpos Antivirales , Sueroterapia para COVID-19 , Epítopos
3.
Journal of Medical Virology ; 94(5):i-i, 2022.
Artículo en Inglés | Wiley | ID: covidwho-1750403

RESUMEN

Front Cover Caption: The cover image is based on the Research Article Aggregation of high-frequency RBD mutations of SARS-CoV-2 with three VOCs did not cause significant antigenic drift by Tao Li et al., https://doi.org/10.1002/jmv.27596.

4.
Signal Transduct Target Ther ; 7(1): 18, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1639142

RESUMEN

Emerging SARS-CoV-2 variants are the most serious problem for COVID-19 prophylaxis and treatment. To determine whether the SARS-CoV-2 vaccine strain should be updated following variant emergence like seasonal flu vaccine, the changed degree on antigenicity of SARS-CoV-2 variants and H3N2 flu vaccine strains was compared. The neutralization activities of Alpha, Beta and Gamma variants' spike protein-immunized sera were analysed against the eight current epidemic variants and 20 possible variants combining the top 10 prevalent RBD mutations based on the Delta variant, which were constructed using pseudotyped viruses. Meanwhile, the neutralization activities of convalescent sera and current inactivated and recombinant protein vaccine-elicited sera were also examined against all possible Delta variants. Eight HA protein-expressing DNAs elicited-animal sera were also tested against eight pseudotyped viruses of H3N2 flu vaccine strains from 2011-2019. Our results indicate that the antigenicity changes of possible Delta variants were mostly within four folds, whereas the antigenicity changes among different H3N2 vaccine strains were approximately 10-100-fold. Structural analysis of the antigenic characterization of the SARS-CoV-2 and H3N2 mutations supports the neutralization results. This study indicates that the antigenicity changes of the current SARS-CoV-2 may not be sufficient to require replacement of the current vaccine strain.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Vacunas contra la COVID-19/metabolismo , COVID-19/prevención & control , Inmunogenicidad Vacunal , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Sustitución de Aminoácidos , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/química , Anticuerpos Antivirales/genética , Sitios de Unión , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/química , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Expresión Génica , Humanos , Sueros Inmunes/química , Subtipo H3N2 del Virus de la Influenza A/química , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/química , Vacunas contra la Influenza/metabolismo , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Modelos Moleculares , Mutación , Pruebas de Neutralización , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/química , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Pseudotipado Viral
5.
J Med Virol ; 94(5): 2108-2125, 2022 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1627779

RESUMEN

Variants of SARS-CoV-2 continue to emerge, posing great challenges in outbreak prevention and control. It is important to understand in advance the impact of possible variants of concern (VOCs) on infectivity and antigenicity. Here, we constructed one or more of the 15 high-frequency naturally occurring amino acid changes in the receptor-binding domain (RBD) of Alpha, Beta, and Gamma variants. A single mutant of A520S, V367F, and S494P in the above three VOCs enhanced infectivity in ACE2-overexpressing 293T cells of different species, LLC-MK2 and Vero cells. Aggregation of multiple RBD mutations significantly reduces the infectivity of the possible three VOCs. Regarding neutralization, it is noteworthy that E484K, N501Y, K417N, and N439K predispose to monoclonal antibodies (mAbs) protection failure in the 15 high-frequency mutations. Most importantly, almost all possible VOCs (single RBD mutation or aggregation of multiple mutations) showed no more than a fourfold decrease in neutralizing activity with convalescent sera, vaccine sera, and immune sera of guinea pigs with different immunogens, and no significant antigenic drift was formed. In conclusion, our pseudovirus results could reduce the concern that the aggregation of multiple high-frequency mutations in the RBD of the spike protein of the three VOCs would lead to severe antigenic drift, and this would provide value for vaccine development strategies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes , Deriva y Cambio Antigénico , COVID-19/terapia , Chlorocebus aethiops , Cobayas , Humanos , Inmunización Pasiva , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Células Vero , Sueroterapia para COVID-19
6.
Emerg Microbes Infect ; 11(1): 1-5, 2022 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1565887

RESUMEN

The emergence of Omicron/BA.1 has brought new challenges to fight against SARS-CoV-2. A large number of mutations in the Spike protein suggest that its susceptibility to immune protection elicited by the existing COVID-19 infection and vaccines may be altered. In this study, we constructed the pseudotyped SARS-CoV-2 variant Omicron. The sensitivity of 28 serum samples from COVID-19 convalescent patients infected with SARS-CoV-2 original strain was tested against pseudotyped Omicron as well as the other variants of concern (VOCs, Alpha, Beta, Gamma, Delta) and variants of interest (VOIs, Lambda, Mu). Our results indicated that the mean neutralization ED50 of these sera against Omicron decreased to 66, which is about 8.4-folds compared to the D614G reference strain (ED50 = 556), whereas the neutralization activity of other VOC and VOI pseudotyped viruses decreased only about 1.2-4.5-folds. The finding from our in vitro assay suggest that Omicron variant may lead to more significant escape from immune protection elicited by previous SARS-CoV-2 infection and perhaps even by existing COVID-19 vaccines.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Interacciones Huésped-Patógeno/inmunología , Evasión Inmune , SARS-CoV-2/inmunología , Pseudotipado Viral , Humanos , Mutación , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
7.
Emerg Microbes Infect ; 11(1): 18-29, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1532383

RESUMEN

Severe acute respiratory syndrome coronavirus 2 variants have continued to emerge in diverse geographic locations with a temporal distribution. The Lambda variant containing multiple mutations in the spike protein, has thus far appeared mainly in South America. The variant harbours two mutations in the receptor binding domain, L452Q and F490S, which may change its infectivity and antigenicity to neutralizing antibodies. In this study, we constructed 10 pseudoviruses to study the Lambda variant and each individual amino acid mutation's effect on viral function, and used eight cell lines to study variant infectivity. In total, 12 monoclonal antibodies, 14 convalescent sera, and 23 immunized sera induced by mRNA vaccines, inactivated vaccine, and adenovirus type 5 vector vaccine were used to study the antigenicity of the Lambda variant. We found that compared with the D614G reference strain, Lambda demonstrated enhanced infectivity of Calu-3 and LLC-MK2 cells by 3.3-fold and 1.6-fold, respectively. Notably, the sensitivity of the Lambda variant to 5 of 12 neutralizing monoclonal antibodies, 9G11, AM180, R126, X593, and AbG3, was substantially diminished. Furthermore, convalescent- and vaccine-immunized sera showed on average 1.3-2.5-fold lower neutralizing titres against the Lambda variant. Single mutation analysis revealed that this reduction in neutralization was caused by L452Q and F490S mutations. Collectively, the reduced neutralization ability of the Lambda variant suggests that the efficacy of monoclonal antibodies and vaccines may be compromised during the current pandemic.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Anticuerpos Monoclonales/química , Anticuerpos Neutralizantes/química , Sitios de Unión , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Línea Celular , Interacciones Huésped-Patógeno , Humanos , Sueros Inmunes , Modelos Moleculares , Mutación , Pruebas de Neutralización , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Relación Estructura-Actividad , Pseudotipado Viral
8.
Front Immunol ; 12: 687869, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1295640

RESUMEN

To determine whether the neutralization activity of monoclonal antibodies, convalescent sera and vaccine-elicited sera was affected by the top five epidemic SARS-CoV-2 variants in the UK, including D614G+L18F+A222V, D614G+A222V, D614G+S477N, VOC-202012/01(B.1.1.7) and D614G+69-70del+N439K, a pseudovirus-neutralization assay was performed to evaluate the relative neutralization titers against the five SARS-CoV-2 variants and 12 single deconvolution mutants based on the variants. In this study, 18 monoclonal antibodies, 10 sera from convalescent COVID-19 patients, 10 inactivated-virus vaccine-elicited sera, 14 mRNA vaccine-elicited sera, nine RBD-immunized mouse sera, four RBD-immunized horse sera, and four spike-encoding DNA-immunized guinea pig sera were tested and analyzed. The N501Y, N439K, and S477N mutations caused immune escape from nine of 18 mAbs. However, the convalescent sera, inactivated virus vaccine-elicited sera, mRNA vaccine-elicited sera, spike DNA-elicited sera, and recombinant RBD protein-elicited sera could still neutralize these variants (within three-fold changes compared to the reference D614G variant). The neutralizing antibody responses to different types of vaccines were different, whereby the response to inactivated-virus vaccine was similar to the convalescent sera.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/terapia , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Línea Celular , Células HEK293 , Humanos , Inmunización Pasiva , Ratones , Pruebas de Neutralización/métodos , Reino Unido , Vacunación , Sueroterapia para COVID-19
9.
Cell ; 184(9): 2362-2371.e9, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1139468

RESUMEN

The 501Y.V2 variants of SARS-CoV-2 containing multiple mutations in spike are now dominant in South Africa and are rapidly spreading to other countries. Here, experiments with 18 pseudotyped viruses showed that the 501Y.V2 variants do not confer increased infectivity in multiple cell types except for murine ACE2-overexpressing cells, where a substantial increase in infectivity was observed. Notably, the susceptibility of the 501Y.V2 variants to 12 of 17 neutralizing monoclonal antibodies was substantially diminished, and the neutralization ability of the sera from convalescent patients and immunized mice was also reduced for these variants. The neutralization resistance was mainly caused by E484K and N501Y mutations in the receptor-binding domain of spike. The enhanced infectivity in murine ACE2-overexpressing cells suggests the possibility of spillover of the 501Y.V2 variants to mice. Moreover, the neutralization resistance we detected for the 501Y.V2 variants suggests the potential for compromised efficacy of monoclonal antibodies and vaccines.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Evasión Inmune , SARS-CoV-2/patogenicidad , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Antígenos Virales/inmunología , Línea Celular Tumoral , Células HEK293 , Humanos , Mutación/genética , SARS-CoV-2/genética
10.
Nat Microbiol ; 6(1): 51-58, 2021 01.
Artículo en Inglés | MEDLINE | ID: covidwho-926541

RESUMEN

Coronavirus disease 2019 (COVID-19) is caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1-3 and individuals with COVID-19 have symptoms that can be asymptomatic, mild, moderate or severe4,5. In the early phase of infection, T- and B-cell counts are substantially decreased6,7; however, IgM8-11 and IgG12-14 are detectable within 14 d after symptom onset. In COVID-19-convalescent individuals, spike-specific neutralizing antibodies are variable3,15,16. No specific drug or vaccine is available for COVID-19 at the time of writing; however, patients benefit from treatment with serum from COVID-19-convalescent individuals17,18. Nevertheless, antibody responses and cross-reactivity with other coronaviruses in COVID-19-convalescent individuals are largely unknown. Here, we show that the majority of COVID-19-convalescent individuals maintained SARS-CoV-2 spike S1- and S2-specific antibodies with neutralizing activity against the SARS-CoV-2 pseudotyped virus, and that some of the antibodies cross-neutralized SARS-CoV, Middle East respiratory syndrome coronavirus or both pseudotyped viruses. Convalescent individuals who experienced severe COVID-19 showed higher neutralizing antibody titres, a faster increase in lymphocyte counts and a higher frequency of CXCR3+ T follicular help (TFH) cells compared with COVID-19-convalescent individuals who experienced non-severe disease. Circulating TFH cells were spike specific and functional, and the frequencies of CXCR3+ TFH cells were positively associated with neutralizing antibody titres in COVID-19-convalescent individuals. No individuals had detectable autoantibodies. These findings provide insights into neutralizing antibody responses in COVID-19-convalescent individuals and facilitate the treatment and vaccine development for SARS-CoV-2 infection.


Asunto(s)
Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Células T Auxiliares Foliculares/inmunología , Anticuerpos Neutralizantes/inmunología , Reacciones Cruzadas , Humanos , Receptores CXCR3/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA